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1. Introduction

In the scientific fields related to quantum physics, one is interested in exact linear
computation, and cannot tolerate any round-off/truncation errors introduced by
conventional p-ary or floating-point arithmetic when dealing with matrices containing
rational entries. The demand for exact computation has led us to explore two possible
approaches: (1) rational arithmetic by representing the numerator and denominator of
fractional numbers with arbitrary length integers; (2) residue or modulo arithmetic using
p-adic number systems [1 Krishnamurthy 77]. The computational complexity of the
first approach has been extensively studied. Not only has it been shown that it is very
expensive and laborious, but also that it is a very challenging computer science problem
to deal with dynamic memory allocation during the computing process. The second
approach represents all integers and rational numbers in terms of a set of residues with
respect to a prime number and its powers called a p-adic number system. The p-adic
arithmetic has many attractive features [1]. Furthermore it appears that an extension of
the formalism of quantum theory to the field of p-adic numbers is of great interest even
independent of possible physical applications because it may lead to a better
understanding of the formalism of quantum theory [2 Vladimirov chapter 3]. We have
written C++ routines for approach (1) and utilized part of the NTL and have started to
build a computational library using a p-adic system for applications in quantum
computing. One specific application of quantum computing, quantum computational
Weyl-Heisenberg representations was studied and investigated.

The demand for exact computation in scientific fields related to quantum physics
is not met by the Symbolic Math Toolbox developed in MATLAB. In particular, exact
evaluation rational multiples of 2nt is at the heart of efficient implementation of
quantum time-frequency transforms. Computations performed using this Toolbox
generate erroneous results when used with numbers with more than twenty digits in
length. Furthermore, the results of our investigation lead us to believe that
floating-point operations may be used during the computing process of this Toolbox.
The Exact Computing system introduced in this report yields significant decreases in
computation times, as well as providing an exact method of storing and computing
data.

In this system, exact values are obtained by storing numbers as numerator and
denominator of rational numbers. Integers can be of any length. We define a data
structure of rational matrices using rational numbers and a set of related operators.

I



i

The Exact Computing system is written in Visual C++, which can be called from
MATLAB.

We also started to use alternative approach to represent all integers and rational
numbers in terms of a set of residues with respect to a prime number and its powers,
called a p-adic number system. The p-adic arithmetic has many attractive features [1].

2. Technical Issues Addressed

2.1 Computational Issues of Rational Arithmetic

In rational matrix computation exact values are obtained by storing an arbitrary length rational

number as numerator and denominator. We define a data structure of rational matrix operations as a

set of operators. The related computational issues are:

a) Data Structure: In order to store data in an exact manner, exact values of rational numbers must be

used and maintained throughout the computation.

b) Integers: The system must be capable of storing and manipulating integers of arbitrary length.

c) Dynamic memory allocation: Use of dynamic memory to define rational matrices as well as
rational numbers. Properties of the rational matrix to be considered are: size, organizational structure,

and implementation of rational matrix calculations.

d) Interface: Once these problems have been addressed, the interface between C++ and MATLAB

must be considered if one is interested on calling C++ routines from MATLAB due to arbitrary

length.

NTL, written by Victor Shoup, is a high-performance, portable C++ Library for number theory that

provides both data structures and algorithms for arbitrary length integers. NTL allows manipulation

of integers for vectors, matrices, and polynomials over finite fields, and arbitrary precision
floating-point arithmetic.

In our Exact Scientific Computational Library, we only use the arbitrary length integer part of NTL

to accomplish the task of input, output, and storage of arbitrary length integers.

Further information about the NTL library can be found at: http://shoup.net/ntl/.

We have defined a set of rational number operators as:

Operator +:
RationalNumber a, b;

a+b=(a.numerator*b.denominator+b.numerator*a.denominator)

/a.denominator*b.denominator;
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Operator -:

RationalNumber a, b;

a-b=(a.numerator*b.denominator-b.numerator*a.denominator)

/a.denominator*b.denominator;

Operator *:

RationalNumber a, b;

a*b=a.numerator*b.numerator/(a.denominator*b.denominator);

Operator /:

RationalNumber a,b;

a/b=a.numerator*b.denominator/(a.denominator*b.numerator);

Operator =:

RationalNumber a, b;

a=b means:

a.numertor=b.numerator;

a.denominator-b.denominator;

Simplify ( );

Find the GCD of numerator and denominator; divide both numerator and denominator by the GCD.

Operator ==:

Suppose rational numbers a and b are in simplest form. If a.numerator==b.numerator and

a.denominator==b.denominator, rational number a equals b.

These operators serve as the basic functions of the implementation of the rational arithmetic

approach. During the computational process all rational entries of a matrix will keep their fractional

data type and will not transfer to floating-point. We have implemented some basic rational matrix

operations such as: addition, subtraction, multiplication and square matrix inverse. More functions

will be added to the library. All routines are written in C++. Interface of our ESCL with MATLAB

has been designed and tested. Preliminary results will be reported in section 3.

2.2 Computational Issues of P-adic Arithmetic

The p-adic arithmetic system was introduced for linear computation by Krishnamurthy [1] in 1977.

The properties of freedom from round off errors and of simplicity of hardware/software

implementation have made it attractive to the scientific community for exact computation. Let us

briefly introduce the p-adic number system and its application in related arithmetic algorithms for

rational matrix computation.

2.2.1 Segmented P-adic Expansions (Hensel Codes)

Let a-ab be a nonzero rational number such thatb # 0. Then a can be uniquely expressed as

an expansion of powers ofa primep as:
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a = ajpj (1)

Where 0 <_ a < (P -1) . The infinite series (1) converges to the rational number a in the

p-adic norm.

The expansion is infinite except in the case of rationals of the form Y"' for n > 0.

These rational numbers are called radix fractions.

A general rational number (other than a radix fraction) does not terminate in its p-adic expansion and

the convergence to the actual value in the sense that the p-adic norm is obtained only for infinite

terms. If we segment the p-adic expansion of a rational number to finite t terms, there is a residue

equivalent of this finite expansion, Hensel code H(p,r,a), and this expansion form the basis for

exact computation [1]. As long as the absolute value of the numerator or denominator does not

exceed 7 -1)/2, the Hensel code is unique.

Let us briefly describe Hensel Codes [1]. If we truncate or segment the p-adic expansion of a

rational number to a finite number of digits r, this truncated number has no resemblance to the

rational in the sense of ap-adic norm and it corresponds to some radix fraction. However, there is a

residue equivalent of this finite expansion and this forms the basis for exact computation. We will

discuss this aspect now.

Definition: Let a be a rational number and a_,,a_+,..., .a_ k... be its p-adic expansion.

Then the finite segment a-n~ Ia-++, ... a-a 0 ...ak..., where r = n + k + 1 is called the Hensel

code of a and is denoted by H(p.r.a).

For convenience, H(pt,a) is denoted as an ordered pair in the mantissa-exponent form

thus:(m.,eJ). Since we keep the length of H(p,r,a)constant (r digits), e. is permitted to be zero or

to be only negative values. When e. = -n, the radix point is placed n digits to the right of the

left-most digit of m, accordingly, the mantissa is an integer and we can always assume that ma is

of the form

and

ea ___0.

Let a = (a/b) Pn be a rational number where

GCD (a, b) = 1. and GCD (a, P) = GCD (b. P) = 1.

Let H(p,r,a)=(a.,a, ..... ar-,,-n) = (m,,e,) then ma a=ao,a,..., a,-, is the p-ary

representation of the integer la' b -'I.- in other words
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ma = a.b-1 p ar P.
P i=0

2.2.2 Arithmetic Operations Using Hensel Codes

Basic arithmetic operations using H(p, r, a) codes are essentially modulo Pr arithmetic realized

as recursion of modulo p operations. Let H(p, r, a) = (m,, e,,) and

H(p, r,,8) = (m , e.) where

ma =...,a0.a,_1

m P= ...,bo0..•_b,

1) Addition-subtraction: The algorithm for addition aligns the p-adic point of the mantissa, retaining

the lower exponent and finds the sum digit S, and carry digit Ce4+ from a knowledge a,, bi and

Ct.

Thus si =(aj +bi +Ci)modp

for i =0 , 1, 2,..., (r-1)

c,+ 1=1, if a,+b.+c. >p

=0, otherwise

co = 0, and ignore cr.

Subtraction is realized as a complemented addition.

2) Multiplication: This is similar to p-ary multiplication, except that the product is developed to only

lower r digits (modulo P?) (and hence has a complexity O(r(r+l)/2)). The algorithm consists in

forming the cross-products of the mantissa

P. =biaj for 0<i<(r-1)

andJ =0,1 ,...r - I, and the partial product P, and product P thus
r-I

j=O
r-1

P • PA(i)
i=O

where A(X) denotes a right shift of X digits. The exponent of the result is (ea + es).

3)Multiplicative Inverse and Division: Given that 0 < m3 < pr - 1 and

GCD(p, min) = 1, m. 1 mod p" can be obtained very simply by a recursive solution of the
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congruence with respect top.

Let mfl =bo~b]9 .... b,_-(bo # 0) and mf qo,qi,...,q.-i. The qcan be obtained by solving

for qj in

r-I

m, _ qj p' = Imodpr.
j=0

Thus, starting with qO = bo' mod p, qk (k >_ 1) is computed by solving for

k-I

(qpk + Zqip')b - lmodpk+1 .
i=0

This leads to the following deterministic trial-error-free division algorithm the quotient, digit by

digit, proceeding from the lower index to the higher index position.

The following is the algorithm for finding ma "MRn

Let

Ro zero-th partial remainder or initial numerator (=1 for finding b'-);

R, ith partial remainder;

Ri, ith positional digit of Ri.

Then

q, = R11b.' mod p

for i=0, 1, 2, ... , (r-1) and R,+1 = R, - qbA(i), where A(i) is the right shift by i digits.

Note that this algorithm can be applied for any numerator; by setting R00 = 1 and all other digits of

R0 to zero, one can obtain the multiplicative inverse of m#. This algorithm has a complexity

O(r(r+1)/2). The exponent of the result is (ea - e,).

2.2.3 Conversion of Hensel Codes to Rationals

Although there are several methods available [5], we will describe here a simple method that is very

efficient and economical for matrix computations.

As every rational number a/b (b # 0. 0 O al • ( 1)/29 0 < bJ- • J(PVJ-1/ 2)) is

presented in the form (a . b-I mod pr, it is possible to determine a as well as b if some common
multiple of all the denominators involved in a given algorithm is known. Since any algorithm

consists of a predetermined sequence of arithmetic operations, it is possible to derive the arithmetic

expression for this common multiple, and this facilitates the conversion.
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3. Implementations

3.1 Implementation of Rational Arithmetic

We have written some of the routines for this approach and utilized part of the NTL to fulfill the task

of input, output and storage of arbitrary length integers. We have defined the rational number data

structure with arbitrary length integers, rational operators, rational matrix operations.

For the rational number data structure, the number is stored as its numerator and denominator with

arbitrary length integer. This maintains the precision of the number during the calculation. The

defined rational operators are +, -, *, / and <, >, <, >=. During computational process all rational

numbers will keep their fractional data type. The floating-point data type was never used, to keep the

calculation free of round-off/truncation errors.

We use the following two examples to show the advantages of our programs in terms of computing

speed and exactness (correctness) by comparing our results with the results generated by the

MATLAB-embedded Symbolic Toolbox.

As far as exactness is concerned, when the input values are small, both methods obtain the same

results. However, when the input values reach very large size (20 digits or more), our system can

obtain exact results, while the symbolic computation can only get approximations. (We suspect that

the Symbolic Toolbox uses floating-point during computations). Our system performs exact

computing, while the Symbolic Toolbox cannot be fully trusted in processes requiring exact

computation.

Example 1: When the data sizes are small, the results are the same.

x = [5/7 9/3 0; y = [5/7 2/3 0 2/3;

9/-8 0 3/8; 7/8 0 5/3 6/5;

-2/3 2/3 3/4; 2/3 2/5 3/4 7/8];

5/6 7/-8 0];

ESCL_multiplyResult]=

'1229/392' '10/21' '5' '428/105'

'-31/56' '-3/5' '9/32' '-27/64'

'17/28' '-13/90' '241/144' '1457/1440'

'-229/1344' '5/9' '-35/24' '-89/180'

symbolicMultiplyResult I =

[ 1229/392, 10/21, 5, 428/105]

-31/56, -3/5, 9/32, -27/64]

[ 17/28, -13/90, 241/144, 1457/1440]

[-229/1344, 5/9, -35/24, -89/180]
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Example 2: When the data sizes are large, the results are different. The special data set chosen can

easily show that our result is correct, while the Symbolic Toolbox is not.

x=[123456789987654321/77777777777777777777, 88888888888888888888/33

-123456789987654321, 88888888888888888888/33];

y=[77777777777777777777/123456789987654321, 1

33/88888888888888888888, 0];

ESCLMultiplyResult_2 =

[2 111111111/70000000007]

[-77777777777777777776 -123456789987654321 ]

symbolicMultiplyResult_2 =

[81129638414606679562133097328419/40564819207303340847894502572032,

1830034132283545/1152921504606846976]

[-3155041493901370661340022104799488036864391447196301/405648192073033408478945025720

32, -123456789987654320]

To demonstrate the gain in computational speed, the reports generated by MATLAB profiles show

that the results of matrix multiplication with small rational entries, our system is about 2.5 times

faster, and square matrix inverse is about 5 times faster than the MATLAB results. We only

compared two systems of matrices with small rational entries, since MATLAB can only give correct

results in this case.
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3.2 Implementation of Matrix Computation Using P-adic Expansions

Program Overview Flowchart:

User Input

String2zzO

Get two vectors:

Numerator Vector &

Denominator Vector

SelectP0

Get the right prime

number P.

I mEstimateo

Get the proper m.

SFrac2padic0

Represent the fraction

by p-adic sequence.

Matrix2padic0

Get the p-adic matrix]

which is a 3-D matrix.

Detail explanation of the program:

User Input
FileName: ZZTools.cpp.
It includes these two functions:
void string2zz(string ell, int roww, int coll,vecZZ &allnum,vecZZ &allden),
ZZ tolnteger(string str, int len).
Input: Rational matrix (the length of each elem mEstimateo be arbitrary long)
Output: Numerator vector and Denominator vector.

It is known that the normal data structures cannot deal with arbitrary length integer due to
overflow if the input number is too long. The NTL library is used to handle this problem in our
program.
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The following is the description of user interface:

First, the program reminds the user to input the number of rows and columns of a matrix.

Second, the program asks the user to input the element in first row, second row and so on.

Third, the program saves input into two ZZ type vectors; both of them have the same size,

rows-by-columns. One is used to save numerators and the other one is used to save denominators.

The two vectors will be shown on the screen.

Demo of input process: We can see the user interface from the following diagram. It shows that

this process can deal with all kinds of input successfully, such as arbitrary long integers

(1111111111111111111111111...), fractions (1/3), negative numbers (-792, -12/7) and decimals

(12.5, -13.567).

I.~ý . P I

Prime number selection:

FileName: selectP.cpp
It includes the following two functions:

vecZZ llstPrimeO,

ZZ selectP(vecrZZ vecDen).

Input: Denominator vector.

Output: Smallest Proper prime number.

In C++ program, we implement this process as:

First, we generate the prime number in order.

Second, select the prime number that cannot divide each element of the denominator vector.

Example: for a given rational matrix:
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[2/5, 0.6

2/3, 0.75],

the smallest prime number is 7.

Find the proper number of digits of a p-adic sequence for the whole matrix

FileName: PredictM.cpp.

It includes the following functions:

void Demon(vecZZ inputNum, vecZZ inputDen,vecZZ& outNumvecZZ& outDen, ZZ&

Gc);

void GcdO(ZZ fZZ g, ZZ& del, ZZ& gam, ZZ& k, ZZ& el);

void sumRows(vecZZ inputNum, vecZZ inputDen,vecZZ& rowNum, vecZZ& rowDen, long

m, long n);

long mEstimate(vec ZZ inputNumvecZZ inputDen, ZZ prime,long m,long n);

Input: Numerator Vector, Denominator Vector, prime number and the size of matrix.

Output: Proper m (m is the number of digits of the p-adic sequence).

The given numerator vector and denominator vector have been simplified.

If it is a fractional number, for example 0.618, we take numerator = 618 and denominator = 1000.

The following diagram shows this process:
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Numerator Vector Example:

Denominator Vector Input:

Prime number numerator vector is: [2 3 2 3];

denominator vector is : [5 5 3 4];
prime number is: 7

After simplifying, the denominator

denominator vector vector is : [5 1 3 4];

Get the least common The least common multiple LCM-60,

multiple (LCM) and and integer matrix is:

integer matrix (M) [24, 36

40, 45].

M[i]=I M[i] 1

I Sum the rows of the matrix, then we can

Sum the rows of get a row vector:

the matrix [ 64 81]

aa =The product of this row aa.numerator is: 51840000
* LCM * 1000/618 aa.denominator is: 103

m=ceil(2*(log(aa.numerator)"

log(aa.denominator)) /log(Prime))+l The result m=15

Expand the single fractional number into a P-adic sequence

FileName: fracPadic.cpp

It includes this function:

voidpadicExpand(vecZZ& w, ZZ prime, long numdig),

and it calls the following functions:
ZZ BoundP(ZZ b , ZZ prime);

ZZ invertp(ZZ n, ZZ prime);

ZZpowmod(ZZ v ,ZZ t, ZZ prime);

RationalNumber* SimplifyO;

ZZ powerP(ZZ p, ZZ t).
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Input: the numerator and denominator of a rational number, prime number, digits number of the

p-adic sequence.

Output: P-adic sequence vector for the rational number.

We use the following diagram to show this process:
Rational number (R),

•, Prime number (P),

" Number of di ;ts m

Get the offset of JRI,

W[01= offset

Using the offset to simplify the

rational number 1RI, then we get R2

W[i] (R2.Numerator*(R2.Denominator%P))%P
ý i--i+l

R2 = (R2-W[i]) / P;

W -- W 
< > O

W[01=offset,

W[II=P-W[ll

W[k] =P-W[k]-I

k=k+l
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Example:

Input: R= -7/9, P=2, m=15,

Output: [0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0].

Represent a rational matrix using p-adic expansion matrix

FileName: matrixCal.cpp

It includes the function: void matrix2padic(vecZZ vecNumvecZZ vecDenmatZZ&

matPadic,long numdig,ZZ prime).

Input: Numerator vector, denominator vector, prime number, and the number of digits.

Output: P-adic sequence matrix.

The implementation: For each element of the rational matrix, we call padicExpand(.) function

in the file "fracPadic.cpp" , then we can get a p-adic sequence vector for this rational number.

Repeat for all the elements of the matrix, finally, we get the p-adic sequence matrix for the rational

matrix.

The following chart is an example.

Plas inu th nube of 4 .t 4 4

,Pleasefollow`theiinstructio-- stoinpu't'-' theelementsoft, e ma",trix.

ýHOT: Atereac eleentyoui~pt~plaseadda cmma

Pleas inpt IRW 1 lemets:4



Future work

In the future, we are going to do the following:

1) Operations in the p-adic sequence domain, such as addition, subtraction, multiplication,

division, matrix inverse and so on.

2) Conversion from p-adic expansion domain to fractional domain.

3) Design friendly user interface.
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